MicroRNA‐99a is a novel regulator of KDM6B‐mediated osteogenic differentiation of BMSCs
نویسندگان
چکیده
Skeletal tissue originates from mesenchymal stem cells (MSCs) with differentiation potential into the osteoblast lineage regulated by essential transcriptional and post-transcriptional mechanisms. Recently, miRNAs and histone modifications have been identified as novel key regulators of osteogenic differentiation of MSCs. Here, we identified miR-99a and its target lysine (K)-specific demethylase 6B (KDM6B) gene as novel modulators of osteogenic differentiation of bone mesenchymal stem cells (BMSCs). Microarray profiling and further validation by quantitative real-time RT-PCR revealed that miR-99a was up-regulated during osteoblastic differentiation of BMSCs, and decreased in differentiated osteoblasts. Transfection of miR-99a mimics inhibited osteoblastic commitment and differentiation of BMSCs, whereas inhibition of miR-99a by inhibitors enhances these processes. KDM6B was determined as one of important targets of miR-99a, which was further confirmed by luciferase assay of 3'-UTR of KDM6B. Moreover, HOX gene level decreased after transfection of miR-99a mimics in BMSCs, which indicated that KDM6B is a bona fide target of miR-99a. Furthermore, in a model of in vivo bone regeneration, osteoblast-specific gain- and loss-of-function experiments performed using cranial bone defects revealed that miR-99a mimics-transfected BMSCs reduced bone formation, and conversely, miR-99a inhibitors-transfected BMSCs increased in vivo bone formation. Tissue-specific inhibition of miR-99a may be a potential novel therapeutic approach for enhancing BMSCs-based bone formation and regeneration.
منابع مشابه
miR-214 suppresses the osteogenic differentiation of bone marrow-derived mesenchymal stem cells and these effects are mediated through the inhibition of the JNK and p38 pathways
In this study, we sought to investigate the expression of microRNA (miR)-214 on the osteogenic differentiation of bone marrow‑derived mesenchymal stem cells (BMSCs) and explore the possible underlying mechanisms. We found that the overexpression of miR‑214 effectively promoted the adipocyte differentiation of BMSCs in vitro, reduced alkaline phosphatase (ALP) activity and the gene expression of...
متن کاملDi-ethanolamine Might Cause Bone-related Complications Due to the Reduction of Osteogenic Differentiation and Induction of Oxidative Stress
Di-ethanolamine (DEA) is a well-known environmental pollutant used in manufacturing soap, detergent, body lotion, and other sanitary products. DEA has been reported to cause cytotoxicity in different tissue and cell, but no study was found to explain the toxic effect of DEA on rat bone marrow mesenchymal stem cells (BMSCs) differentiation. Thus in the present study, the differentiation property...
متن کاملGene co-expression network analysis identifies BRCC3 as a key regulator in osteogenic differentiation of osteoblasts through a β-catenin signaling dependent pathway
Objective(s): The prognosis of osteoporosis is very poor, and it is very important to identify a biomarker for prevention of osteoporosis. In this study, we aimed to identify candidate markers in osteoporosis and to investigate the role of candidate markers in osteogenic differentiation. Materials and Methods: Using Weighted Gene Co-Expression Network analysis, we identified three hub genes mig...
متن کاملDifferentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells
Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...
متن کاملEvaluation of MicroRNA-99a and MicroRNA-205 Expression Levels in Bladder Cancer
Bladder cancer is the second most common cancer in the genitourinary tract, showing often recurrence and progresse into invasive states. Epigenetic changes, such as microRNA alteration are involved in bladder cancer tumorigenesis through a variety of signaling pathways. The epigenetic state depends on geographic and lifestyle conditions. The aim of this study was to investigate the expression l...
متن کامل